● 어느 도서관에 1,2,3 층 서가가 있다. 1층에 전체 도서의 50%, 2층에 25%, 3층에 25%의 책이 있다. 또한 각 서가에는 국내 서적과 외국 서적이 섞여 있는데, 1층에는 1층 도서 중 25%가 국내 서적, 2층에는 2층 도서 중 50%가, 3층에는 3층 전체 도서 중 75%가 국내 서적이다. 어느 한 권의 책을 무작위로 뽑아 보니 국내 서적이었다. 이 책이 2층 서가에서 나왔을 확률은?
답:
P(Ai) = i층의 서가에서 나올 확률
P(B) = 국내 서적일 확률
P(A2/B) = P(A2∩B)/P(B) = P(A2∩B) / {P(A1∩B) + P(A2∩B) + P(A3∩B)
= P(A2)P(B/A2) / {P(A1)P(B/A1) + P(A2)(B/A2) + P(A3)P(B/A3)}
= 25% x 50% / {50% x 25% + 25% x 50% + 25%x75%)} = 2/7
● 아래 벤다이어그램은 서울에서 지난 10년간 겨울철에 발생한 강수 평태를 표시한 것이다. 서울에서 겨울철에 강수가 바생할 때 눈이 올 확률은?
무강수 600일 | 비 120일 |
눈 180일 |
답: 강수가 발생했을 때 눈이 올 확률 = 눈일수/(강수(눈+비) 일수) =180/300 = 0.6
● 크립토 행성을 탈출하여 지구로 날아오는 슈퍼맨의 우주선을 생각해 보자. 이 우주선은 지구 궤도로 들어와 지상으로 자유 낙하하였는데 낙하 가능 지점은 3개의 지역이 있다고 하고 각 지역에 낙하할 확률은 동일한 것으로 간주하자. 이 때, 1-αi (i=1,2,3)을 낙하한 우주선이 실제 i지역에 있을 때 i 지역에서 발견할 확률이라고 하면, 1지역에서 찾지 못했다는 조건 하에 우주선이 실제로는 1번째 지역에 있었을 확률을 구하시오.
답: 1-αi 답: 이 실제 i지역에 있을 때 i지역에서 발견할 확률이므로, 우주선이 1지역에 있을 때 1지역에서 발견하지 못할 확률은 1-(1-α1) = α1 이다. 우주선이 실제 i지역에 있을 사상을 Ri (i=1,2,3)이라고 하고 1지역에서 우주선을 찾지 못할 사상을 N라고 하면 구하고자 하는 조건부확률은 다음과 같다.
P(R1|N) = P(N∩R1)/P(N) = P(N|R1)P(R1) / ∑P(N|Ri)P(Ri) = (α1x 1/3) / { α1x 1/3 + 1x1/3 + 1x1/3} = α1 /(α1 + 2)
● 모 상품의 시장 조사 결과는 다음과 같다. 임의의 한 응답자를 선택했을 때 그 사람이 SNS 광고를 시청했을 경우 상품을 구입할 조건부 확률은 얼마인가?
SNS 광고 시청했음 | SNS 광고 시청하지 않았음 | |
상품 구입함 | 40 | 60 |
상품 구매하지 않음 | 60 | 40 |
답: P(상품구입함|SNS광고시청함) = 40/100 = 0.4
● 미국 여성의 10%는 폐암에 걸린다고 한다. 폐암에 걸린 여성 중 80%가 흡연자인 반면 폐암에 걸리지 않은 여성 중 40%가 흡연자라고 한다. 어떤 흡연 여성이 폐암에 걸릴 확률은 몇 %인가?
답: 베이즈 공식이용
폐암(O) 10% => 흡연 80% 비흡연 20%
폐암(X) 90% => 흡연 40% 비흡연 60%
따라서, P(폐암|흡연여성)= 0.1x0.8 / (0.1x0.8 + 0.9x0.4) = 0.1818 = 18.18%
● P 대학교 전체 남녀 비율은 여자가 60%이고 여자이면서 머리에 염색을 한 학생의 비율은 30%이다. 여학생 한 명을 선택할 때 그 학생이 머리 염색을 하였을 확률은?
답: 조건부 확률 계산하면 P(염색|여자)=0.3/0.6=0.5
● 코로나 항체 반응검사에서 코로나에 걸린 사람들 중에서 95%가 (+)반응을 보이고 코로나에 걸리지 않은 사람도 1%의 (+)반응을 나타낸다고 한다. 전 국민 중에서 1%의 사람들이 코로나에 감염되었다고 할 때 코로나 반응검사에서 양성반을을 나타낸 사람이 실제로 코로나에 걸렸을 확률은?
답: 베이즈공식 사용하면, 0.01x0.95 / {(0.01x0.95)+(0.99x0.01)} = 0.4896=95/194
● 어느 지역 주민의 3%가 집단 감염에 걸렸다고 한다. 이 병에 대한 진단방법에 따르면 감염자의 95%가 양성반응을 나머지 5%가 음성반응을 나타내며 비감염자의 10%가 양성반응을 90%가 음성반을을 나타낸다고 한다. 주민 중 한 사람을 임의로 검진한 결과 양성반응을 보였다면 이 사람이 병에 감염되어 있을 확률을 %로 구하시오.
답: 베이즈 공식 사용, 0.03 x 0.95 / {(0.03x0.95)+(0.97x0.1)} = 22.7%
● 중고 시장에서 거래되는 골동품의 20%가 모조품이라고 알려져 있다. 골동품 감정사들이 진품을 진품으로 평가할 확률은 85%이고, 모조품을 진품으로 감정할 확률은 15%이다. 감정사가 진품이라고 감정한 그림을 어떤 고객이 구매했을 경우, 그 구매한 골동품이 진품일 확률을 구하고 소수 첫째자리까지 %로 나타내시오.
답: 베이즈 공식을 사용하여 95.8%
● 어떤 상자 속에 백색 2개 적색 3개 흑색 5개 모두 10개의 구슬이 들어있다. 이 상자에서 임의로 구슬 3개를 꺼내는 경우, 백색 2개 흑색 1개의 구슬이 나올 확률은?
답: 무작위 비복원추출을 이용하여, 2C2 x 5C1 / 10C3 = 1/24
● L회사의 제품 X에 대한 구매의사를 총 100명(남자 40명 여자 60명)을 상대로 조사하였다. 그 결과 구매의사를 가진 남자는 20% 여자는 50%이었다. 100명 중 임의로 한 사람을 선택했을 경우 여자이면서 구매의사를 가질 확률은?
답: 조건부 확률식을 이용하여 P(구매찬성|여자) = 0.5x0.6 / 0.6= 0.5
● 어떤 나라 국민들 중 왼손잡이의 비율이 남자가 2% 여자가 1%라 한다. 남학생 비율이 60%인 어느 학교에서 왼손잡이 학생을 선택했을 때 이 학생이 남자일 확률은?
답: 베이즈 공식을 이용하여, 75%
● 나라장터 조사팀은 기상관측기기 X 에 대한 구매의사를 조사하였다. 국가기관40개와 민간 60개 모두 100개 기관을 대상으로 조사한 결과, 구매의사를 보인 기관은 20%, 민간은 50%이었다. 100개 기관 중 임의로 한 기관을 선정하였을 때, 민간인 조건하에서 구매에 찬성할 확률은?
답: P(구매신청 | 민간) = P(구매신청 ∩ 민간) / P(민간) = 0.5 x 0.6 / 0.6 = 0.5
● P(A) =0.3, P(A|B)=0.25, P(Ac∩Bc) = 0.4 일때, P(B|A)는 ?
답:
P(Ac∩Bc) = P(A∪B)c = 1-P(A∪B)=0.4
P(A|B)=P(A∩B)/P(B) = 0.25이므로, P(A∩B)=0.25P(B)
P(A∪B) = P(A) + P(B) - P(A∩B) = 0.3 + P(B) -0.25P(B) = 0.3 + 0.75P(B) = 0.6 이므로
P(B)=0.4
P(B|A) = P(A∩B)/P(A) = 0.25 x 0.4 / 0.3