728x90
반응형

 

CAPE(Moncrieff and Miller, 1976)는 기온과 수증기의 연직 분포로부터 대류를 발생 및 강화시킬 수 있는 잠재 에너지를 수치화 한 것이며, 단열선도(Skew T - log P)를 이용해 CAPE를 계산하는 방법은 다음과 같다.

 

 

그림 5는 단열선도를 이용하여 CAPE를 계산하는 예이다.

여기서, EL은 175hPa, LFC는 800hPa, CAPE내 기온은 기온감율곡선에 비해 약 10℃ 더 높다. 따라서 간단하게 아래와 같이 CAPE를 계산할 수 있다.

CAPE는 저기압영향 내에서 대류성 강수가 발생 가능한 조건일 때, 시간당 최대 강수량, 돌풍 가능성 등을 예측하는데 참고자료로 활용성이 높다. 그렇지만 CAPE의 수치만을 이용하여 강수량이나 돌풍의 강도를 예측하는데 한계가 있다. 미국에서는 중규모 폭풍(뇌우, 토네이도)지표로 활용하고 있고, 우리나라 에서는 주로 호우 및 돌풍 예측에 활용하고 있다.

 

아래 그림 6의 실제 사례를 살펴보면, 2011년 4월 30일 6시에 중부지방을 중심으로 저기압에 의한 대류성 구름들이 발달하였다. 대류성 구름대의 분포는 100이상의 CAPE지역과 비슷한 것을 알 수 있다. 특히, 700이상의 높은 CAPE값 지역과 적외영상에서 가장 발달된 구름대의 위치는 모두 경기만을 중심으로 위치하고 있다. 호우가 예상될 때, 호우구역의 위치 및 강수집중 시간, 발달 및 약화 등을 일기도 분석과 CAPE예측을 통해 진단 할 수 있음을 의미한다.

 

그림 6. 2011년 4월 30일 06 KST, UM-RDAPS CAPE(a) 예측장(12UTC 생산)과 적외영상(b)

반응형
728x90
반응형

CT(Miller, 1967)는 하층의 수증기와 중층의 기온으로 만들어진 지수로서, 간단하게 뇌우의 강도를 예측 할 수 있다. 그렇지만 기압계의 이동으로 500hPa고도의 찬공기가 온난해 지거나, 850hPa의 습윤층이 건조하게 되면 CT값은 신뢰할 수 없다.

 

 

CT는 로키산맥의 동쪽과 난류의 영향을 받는 멕시코만 인근 지역에서 뇌우의 범위와 강도를 예측하기 위해 개발되었다. 동중국해와 인접한 우리나라에서도 이 지수는 활용가능하다.

 

CT는 일반적으로 18~22는 보통의 뇌우 강도를 22, 이상은 강한 뇌우발생 가능성을 의미한다. 2006년 4월 19일 21시 오산 고층관측에서 850hPa 노점온도는 -5.9℃, 500hPa 기온은 -30.5℃를 보였다. 이때 CT는 24.6으로써 뇌우가 강하게 나타날 수 있는 조건을 만족했다. 실제로 19일 22시에서 20일 01시 사이에 수원관측소에서 뇌우와 함께 우박이 관측되었다.

 

이 지수의 특성상 500hPa에 한기핵을 가진 절리저기압(cut-off low)이나 발달된 상층 기압골의 영향 범위에 들 때 활용성이 높다.

 

그림 4. 2006년 4월 19일 22KST 한반도 적외영상(좌)과 21시 500hPa 분석장(우)

반응형
728x90
반응형

 

SSI(Showalter, 1947)는 계산식이 간단하고 편리하여 일반적으로 대기불안정 상태를 진단하고 예측하는데 많이 활용되는 있는 불안정 지수이다.

고립된 공기내(공기의 유·출입이 없는 상태)에서 야간복사냉각으로 인한 지면부근에 역전층이 주간에 일사에 의한 가열로 해소되면서 기층이 불안정화 되어 뇌우가 발생될 가능성을 가늠해 보기 위해 개발되었다. 따라서, 맑은 날씨에 바람이 거의 불지 않는 안정된 기단의 영향을 받고 있을 때, 지면의 급격한 기온 상승 예측을 통해 대류가 발생하여 뇌우발생(소나기) 가능성을 진단하는데 유용하지만, 저기압에 의한 강수나 하층수렴, 상층발산의 대류운동이 잘 발달된 연직대기 상태에 적용하는 것은 적합하지 않다. 또한, 빠른 기압계의 흐름(변질된 기단 영향)에서도 적합하지 않다. 만약, 850hPa을 통과하는 깊은 역전층이나 수증기가 급격하게 감소하는 층이 있는 경우에는 SSI를 보완한 LI를 참고할 수 있다.

 

상층의 한기가 동반된 뇌우 진단은 CT, TT, S, SWEAT가 유용하며, 여름철 호우형태는 KI, TI가 적합하다.

 

여름철 바람이 없고 안정된 기단 내에서 정오~20시 사이의 소나기 예보에 활용성이 높다.

그림 3의 2010년 8월 2일 9시 사례에서 중부지방을 중심으로 0 내외의 SSI값이 분포하고 있으며, 뇌우(소나기)가 발달한 13시 레이더 영상에서 중부지방 일원에 강수대가 분포한 것을 볼 수 있다.

 

SSI는 850hPa의 기온 영향이 크므로 해발고도(산지, 평지)와 지형적 특징(해안, 내륙)에 따라 지수 값의 차이가 발생할 수 있지만, 일반적으로 3이하의 값에서 소나기 발생 가능성이 높은 것으로 알려져 있다.

 

여름 이외의 계절에서도 상층의 차가운 공기의 영향을 받으면서 흐름이 정체된 대기상태라면 이 지수를 활용할 수 있다.

 

그림 3. 2010년 8월 2일 09시 UM-RDAPS SSI(850-500hPa) 분석장(좌), 13시 레이더 영상(우)

반응형
728x90
반응형

KI(George, 1960)는 주로 여름철 해양성 열대기단의 영향을 받을 때 나타나는 호우와 뇌우를 진단하기 위해 개발되었다. 이 지수는 대기의 대류 잠재 가능성을 알아보기 위한 지수로서, 중층이하 대기층에서 불안정 요소를 진단하기 위해 3개층의 기온과 2개층의 노점온도를 사용하여, 아래 식으로 계산된다. 

이 식의 의미는 850hPa과 500hPa의 기온차가 클수록, 850hPa의 이슬점온도가 높을 수록, 700hPa의 이슬점온도와 기온의 차가 작을수록 커진다는 의미이다. 

 

등지수선은 5간격의 녹색 실선으로 표시하고 지수 25이상은 불안정을 의미한다. KI 지수에 따른 소나기나 뇌우의 경우는 다음과 같다.

 

우리나라에서는 해양성 열대기단인 북태평양 고기압의 영향을 받는 여름철 호우 및 뇌우 진단을 위해 KI를 활용할 수 있다. 우리나라에서 발생된 여름철 대부분의 호우는 KI 값이 30이상에서 나타났다(예보기술팀, 2011).

 

이 보조일기도는 주로 여름철 해양성 열대기단의 영향을 받을 때 나타나는 호우와 뇌우 진단에 사용을 한다. 따라서 주로 5월에서 10월까지만 분석을 한다.

 

이 보조일기도를 분석할 경우 주의사항은 대기 하층에서 대류를 유발할 수 있는 환경이 갖추어지지 않은 경 우(하층이 충분히 포화되지 않고 건조한 층이 존재할 경우 또는 역전층이 존재할 경우 등)는 정확성이 떨어진다. 현재의 기상상태에서 역학적 불안정을 의미하지만, 중·상층에 차가운 공기가 위치하는 경우 신뢰성이 떨어진다. 또한 하층대기에 충분히 포화되지 않고 건조한 층이 존재할 경우, 역전층이 존재할 경우에도 정확성이 떨어진다.

 

KI는 호우 및 뇌우예보에 보조지표로서 유용한 지수이지만, 직접적인 상관관계가 높지는 않다. 상층의 차가운 공기가 위치하거나 여름철 지표의 가열로 인한 850hPa의 높은 기온은 KI값을 증가시킬 수 있기 때문이다. 따라서, 하층 수렴, 상층 발산의 연직 대기구조가 잘 갖추어져 있고, 하층대기가 충분히 습윤한 상태일 때 적용가능하다. KI가 30이상 높은 값을 보일 때(그림 2), 저기압 중심의 동쪽(난역) 에서 호우가 종종 발생하는데, 남서풍의 하층제트가 강한 대류 활동을 유발 하는 방아쇠(trigger) 역할을 하기 때문이다.

 

지표가열에 의한 대류불 안정에 의한 뇌우(소나기)예보에는 SSI, LI 등이 적합하다.

 

아래 K-index 보조일기도의 경우 한반도 대부분 지역에서 25이상 분포하고 북한지역 을 중심으로 30이상이 나타나므로 소나기와 심한 뇌우가 발생할 가능성이 있는 것을 볼 수 있다

 

 

 

 

 

 

출처: 

기상청, 손에 잡히는 예보기술

나라배움터,  대기분석 및 실습

 

반응형
728x90
반응형

불안정지수

불안정지수두 개 이상의 임의의 기압면의 온도, 이슬점온도 등을 차로 표현하여 대기의 불안정한 정도를 나타내는 지수를 의미한다. 그러나 모든 상황에 일괄적으로 불안정지수를 적용하기는 쉽지 않으며, 표 1처럼 계절이나 기상조건에 맞는 적절한 지수 선택이 필요하다.

 

표 1은 다양한 불안정지수들 중에서 우리나라에 적용할 수 있는 불안정지수를 골라, 그 지수 수치에 따라 정리한 것이다. 그림 1은 종합기상정보시스템에 제공되는 UM GDAPS 불안정 지수 자료이다.

 

그림 1. 2011년 5월 11일 00UTC UM전구 예상 불안정지수 (위에서 부터 순서대로  KI, SST, TT, CAPE 순)

 

 

 

 

 

출처: 손에 잡히는 예보 기술

반응형
728x90
반응형

호우를 발달시키는 대기 구조

남쪽에서 북쪽으로 이동하는 하층제트는 종종 서에서 동으로 이동하는 상층제트(Upper Level Jet; ULJ) 아래로 통과하면서 서로 커플링되기도 한다. 이런 커플링형태는 직접열순환(direct thermal circulation)을 만든다.

 

하층제트에 의한 수렴과 상승운동은 상층제트 입구의 오른쪽 발산구역에서 강화되면서 지속적으로 강한 상승운동을 만든다(그림 4). 상·하층제트 커플링의 형태로 나타나는 직접적인 열 순환은 우리나라 호우사례에서도 발견된다.

 

 

그림 5는 2009년 7월 14일 사례로 상·하층 제트가 커플링 된 모습을 보여준다.

하층기류에 동반되어 남에서 북으로 이동하는 온난·습윤한 공기는 부력을 얻어 상승운동을 하게 되고, 이 기류는 상층제트 입구의 오른쪽으로 이동하면서 직접적인 열순환 구조를 갖추게 된다. 850hPa 기류의 방향이 200hPa 기류를 타고 넘는 구조로서, 중규모의 호우구역을 찾을 수 있다.

 

하층제트 축의 왼쪽에 해당하는 호우구역은 하층제트의 최대풍(그림 5(a), (b)A)에서 상층제트 축(그림 5(a), (b)B)까지 그은 선 내부로 한정된다. 그림 5(c) 처럼 이 지역은 하층의 강한 수렴과 상층의 강한 발산의 연직구조가 잘 조직되어 호우발생 확률이 높다. 

 

 

그림 5. (a)850hPa 유선과 강풍, 레이더영상을 중첩한 일기도, (b)200hPa 등풍속선(50kts 이상, 10kts 간격)과 발산장 (컬러)의 중첩도, (c)는 (a)와 (b)의 A와 B 지점 사이의 수렴, 발산, 등풍속(10kts간격)을 보여주는 연직단면도 (2009년 7월 14일 00UTC, GDAPS 분석장)

 

 

야간 시간대의 대기 안정화

하층제트는 행성경계층고도 부근에 위치하기 때문에 일변화가 발생한다(Wexler 1961). 낮에는 일사에 의한 지면가열로 행성경계층고도가 높아지고 난류에 의한 마찰효과가 크지만 야간에는 지표부근이 안정화 되어 마찰력이 줄어들면서 하층제트의 풍속이 증가하게 된다. 특히, 야간에는 마찰효과가 없는 상태에서 남에서 북으로 이동하는 하층제트의 특성상 코리올리힘이 증가하여 지균풍보다 더 강한 바람을 만든다.

 

이런 낮과 밤에 풍속차이는 고위도로 수송하는 수증기와 에너지양에 큰 차이를 만들어, 비가 내리는 시점에 따라 호우의 빈도와 강수량의 차이가 발생하게 된다.

 

하층제트가 동반된 호우발생 빈도 연구에서 늦은 밤에서 이른 아침 사이에 발생한 호우가 낮에 발생한 호우보다 25%이상 많은 것으로 조사된 바 있으며, 비슷한 시스템으로 발생된 호우일 경우에도 야간에 강수량이 더 많은 것으로 알려져 있다(Hoecker 1963, Hoecker 1965, Bonner 1968, Augustine and Caracena 1994, Mitchell et al. 1995).

 

 

[ 참고문헌 ]

예보기술팀, 2011: 예보관 핸드북 시리즈 2. 한눈에 보는 호우개념모델 Augustine, J. A. and F. Caracena, 1994: Lower-tropospheric precursors to nocturnal MCS development over the Central United States. Wea. Forecasting, 9, 116-135. Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833-850. Hoecker, W. H., 1963: Three southerly low-level jet streams delineated the Weather Bureau special pibal network of 1961. Mon. Wea. Rev., 91, 573-582. , 1965: Comparative physical behavior of southerly boundary-layer wind jets. Mon. Wea. Rev., 93, 133-144. Mitchell, J. F. B., R. A. Davis, W. J. Jngram, and C. A. Senior, 1995: On surface temperature, Greenhouse Gases, and Aerosols: Models and Observations. J. Climate, 8, 2364-2386. Uccellini, L. W., and P. J. Kocin, 1987: The interaction of jet streak circulations during heavy snow events along the east coast of the United States. Wea. Forecasting, 2, 289-308. Wexler, H., 1961: A boundary layer interpretation of the low-level jet. Tellus, 13, 369-378

반응형
728x90
반응형

하층제트의 패턴을 이용한 호우예보

 

남서풍의 하층제트와 동반된 호우구역은 하층제트 중심(최대풍속)의 북동쪽남서쪽에서 발생하는 호우로 각각 나눌 수 있다(그림 1AB). 하층제트 축(streak)을 기준으로 호우 지역은 기온과 습도의 차이가 큰 축의 왼쪽에 나타난다. 상대적으로 축의 오른쪽에서는 기온과 습도의 차이가 적다.

 

그림 1A 구역온난·습윤한 공기가 한랭·건조한 공기와 만나 상승 기류를 만들어 호우가 발생되는 지역으로써, 주로 지상 및 하층대기에서 저기압 중심의 동쪽에 위치한다. 이 구역에서는 온난전선형과 같이 따뜻하고 습한 공기가 차고 건조한 공기를 타고 북상하므로 폭 넓은 강수대를 형성 한다.

그림 1B 구역은 온난·습윤한 기류를 향해 건조한 북서~서풍의 기류가 침투하면서 상승기류를 발생시켜 호우가 발생하는 지역이다. 이 지역은 한랭전선형 강수대와 같이 폭이 좁고 강한 비를 동반하며, 수평적 (동서방향)인 기온차이보다 습도의 차이가 더 크다.

 

<하층제트 축을 기준으로 호우구역 찾기>

10년간(2001~2010) 우리나라의 호우경보 사례를 대상으로 연구한 결과 850hPa 고도에 최대풍속 25kts 이상의 하층제트가 있을 경우 하층제트 축의 왼쪽 지역(그림 1A, B)에서 15kts 이상의 풍속대에서 주로 호우가 발생하였음(예보기술팀, 2011).

 

하층제트에 의한 호우사례 분석

아래 그림 2는 기류의 진행방향에 따라 풍속이 감소하는 지역으로써 고상당온위역과 저상당온위역이 만나는 지역인 하층제트 중심의 북동쪽에서 호우가 내린 사례이다(2009년 7월 7일).

 

이 지역에서 호우와 관련된 상승운동이 발생되는 이유는 하층대기의 수평적 풍속감소분이 수직적 풍속증가분 (연직상승운동)으로 변화되기 때문이다. 하층제트 중심이 통과하기까지 많은 수증기와 에너지가 계속해서 유입되므로 강수 지속시간이 다른 호우형태에 비해 길며, 폭 넓은 호우구역이 나타난다.

 

그림 2. (a)는 850hPa 상당온위(333K이상 컬러부분), 유선, 등풍속선(15kts 이상, 5kts 간격, 분홍색 실선), 레이더 영상 중첩도. (b)는 (a)의 선 A, B를 잇는 상당온위의 연직 단면도임(2009년 7월 7일 00UTC, GDAPS 분석장)

 

 

 

그림 3은 하층제트 중심(최대풍속)을 기준으로 남서쪽에서 발생하는 호우의 예이다(2009년 7월 14일).

 

이 지역은 온난·습윤한 기류내로 건조한 기류가 침투하면서 활발한 상승운동이 나타난다. 한랭전선형과 같이 폭이 좁은 띠 형태의 강수대가 나타나므로 하층제트 중심의 북동쪽 호우구역(그림 1A지역)에 비해 강수 지속시간은 짧지만 그림 3(b)와 같이 습윤한 북태평양 기단과 건조한 대륙기단이 균형을 이뤄 정체될 경우 많은 비가 내릴 수 있다.

 

그림 3. (a)는 최대풍속지역의 서쪽에서 나타나는 호우의 예이며, 오른쪽 그림은 같은 시간 수증기 영상임 (2009. 7. 14. 18UTC, GDAPS 분석장).

반응형
728x90
반응형

■ 기상학자 로스비가 1956년 TIME지 기사에서 강한 서풍계열의 상층 바람을 “jet stream”이라고 쓰기 시작함. ■ 상층제트의 중심최대풍속은 50~200kts정도며 250kts를 넘을 때도 있음. 겨울철이 여름철보다 남북간의 온도차가 커, 겨울철의 제트가 강함.

겨울철 제트기류의 핵은 250 hPa 고도에 있으며, 강한 저기압이 있는 곳에서는 300hPa 고도에 도달함.

■ 상층제트의 파장은 평균적으로 경도 75°이고, 50°~130°로 다양하게 나타남.

■ 200, 300hPa 일기도에서는 상층 제트축을 풍속 50kts를 시작으로 최대풍을 지나 50kts의 끝까지 5~10㎜의 넓이가 일정한 적색띠로 표시하고 풍하측 끝에 화살표를 붙임(하층제트는 그림 1처럼 별도 분석).

 

그림 8. 200hPa일기도, 2010년 6월 29일 12UTC

 

 

■ 위성영상을 이용해서 제트축을 찾는 방법도 있음.

그림 9(a)처럼 제트축의 고기압성 시어 쪽으로 권운 구름대가 형성,

그림 9(b)처럼 경압 구역의 권운은 없으나, 제트축이 가로지르는 곳에서 A지점처럼 구름이 흐르는 것처럼 보이거나,

그림 9(c)처럼 상층운이 없고, 하층운 구름대의 경계나 상호작용영역에서 찾아볼 수 있음.

그림 9. 위성영상에서 제트 찾는 방법(출처:Satellite Interpretation)

 

그림 10. MTSAT-2 적외영상, 2011년 2월 6일 12UTC

 

 

1. 한대 제트(Polar jet)

한대 제트는 9~12㎞ 상공에 폭이 좁고 속도가 강한 편서풍으로 아래 그림 6(a)처럼 30°~50°사이의 중위도에서 하층의 남북온도 차이에 의해 형성된다. 남북의 온도차는 대기에 서로 다른 층후를 형성하고, 이로 인한 기압경도에 의해 상층 바람은 하층에 온도차이가 큰 곳의 위쪽으로 남에서 북으로 흐르며, 가속되면서 전향력에 의해 동쪽으로 편향되어 전지구를 서에서 동으로 움직이는 바람의 통로를 형성한다. 일반적으로 한대제트를 상층제트라고 부른다.

 

제트가 중요한 이유는 기압계의 주 에너지 원이기 때문이다.

아래 그림 4처럼 제트 입구의 오른쪽, 제트 출구의 왼쪽에 발산장이 형성되면서 직·간접적으로 열이 순환되고, 연직운동이 강화된다. 이러한 에너지 교환은 아래 그림 6(b)처럼 지상기압계를 발달시키고, 반대로 지상기압계가 제트를 강화시키는 상호작용을 한다.

그림 6. (a)대류권부근의 극전선 위의 제트(출처:Weather & Climate)과 (b)2010년 1월 4일 03KST 상하층 기압계 모식도(서울경기 대설사례)

 

2. 아열대제트(Subtropical jet; STJ)

아열대제트는 아열대 지역의 해들리셀과 페렐셀의 경계에서 약한 온도 차이에 의해 만들어진다. 적도수렴대에서 멀어질수록 각운동량 보존법칙에 의해 상층 바람의 서향 성분이 강화된다. 아열대제트는 따뜻하고 습한 공기를 북쪽으로 수송하며, 중위도 기압계를 강화시키는 역할을 한다.

 

 

3. 하층제트 (Low-Level Jet; LLJ)

하층제트는 850hPa이나 925hPa에 나타나며 하층대기에서 강화된 남서풍으로 10~12.5㎧(약 20~25kts) 풍속을 갖는다. 아래 그림 7처럼 저기압성 곡률을 갖는 한대제트 앞쪽에서 2차 순환에 의해서 강화된다.

 

우리나라 주변에서는 주로 여름철에 장마전선 상에서 발달한 저기압에 동반되어 하층제트가 나타난다. 하층제트는 다량의 수증기와 열을 포함한 따뜻하고 습한 공기를 북쪽으로 이류시키는데 중요한 역할을 하며 상·하층간의 대기불안정을 강화시킨다.

 

 

그림 7. (a)하층제트와 대류 불안정, (b)상층제트와 하층 제트의 커플링 모식도(출처:COMET)

 

 

 

 

 

출처: 손에 잡히는 예보기술

반응형
728x90
반응형

층후값을 이용한 예보

일반적으로 1000-500hPa 층후에서 5400m 층후선은 눈과 비를 구분하는 기준선으로 많이 이용한다. 5400m 이하일 경우 대부분의 강수형태는 눈이며, 이 중 약 50%는 1000ft (~305m) 미만에서 형성된다.

 

5400m 이하인 경우에도 눈이 내리지 않을 수도 있다. 따라서 다음의 사항들을 고려해야 한다.

- 고도가 높은 지역에서는 5460m이나 5520m 층후지역에서 눈이 발생할 수 있다.

- 두 기층 사이에 난기이류가 있을 경우 층후는 증가하지만, 여전히 하층이 빙점 이하의 기온을 유지하고 있다면, 강수형태는 눈이다.

- 대기하층의 기온(주로 925hPa 기온이용)은 강수형태를 결정하는 중요한 요소로, 지면의 얇은 극 기단은 5400m 이상의 층후에서도 비나 진눈깨비를 다시 눈으로 얼릴 수 있다.

 

기상청 현업에서는 겨울철에 강수형태 판단을 위해 1000-700hPa 층후도를 사용하며, 2760m의 평균온도는 264.23K로, 평균 기온감률을 고려하면 지상 기온은 0도 이하가 된다(Bluestein, 1993). 보통 2760m이하는 눈, 2820m이상은 비로 판단하며, 강수형태의 전이역은 그림 5(a)처럼 빨간 빗금처리를 하여 표출한다.

 

 

 

또한, 아래 그림 6처럼 전일 12UTC의 1000-925hPa 층후값 또는 1000-850hPa 층후값과 최저기온과의 선형적 상관관계를 이용하여 최저기온 예보에도 활용할 수 있다(Massie and Rose 1997, Rose 2000).

 

 

 

[ 참고문헌 ]

Bluestein, H. B., 1993: Synoptic dynamic meteorology in midlatitudes. Oxford Press, V2, 426-455.

Massie, Darrell R. and Mark A. Rose, 1997: Predicting daily maximum temperatures using linear regression and Eta geopotential thickness forecasts. Wea. Forecasting, 12, 799-807.

Rose, M., 2000: Using 1000-925 mb thicknesses in forecasting minimum temperatures at Nashville, Tennessee. Technical Attachment SR/SSD 2000-25.

수치모델관리관, 2010: 수치예보자료이용편람, 32-34

반응형
728x90
반응형

층후도의 패턴을 이용한 예보

1000-500hPa 층후도는 온난이류 지역의 대류성 호우구역을 찾는데 유용하다. 등층후선들이 밀집되어 있다가 느슨해지는 곳이 층후분류지역(thickness diffluence area, 그림 1).

 

A, B지점 모두 하층에서 상층으로 갈수록 바람이 순전(veering)하는 온난이류의 영향을 받는 곳이나, B지점은 A지점에 비해 하층바람(Vl)의 풍속이 크다. B지점에서 A지점으로 향하는 하층바람은 등층후선을 가로질러 이동하면서 풍속이 감소하게 되는데 이는 하층대기의 수평적 풍속감소분을 수직적 풍속증가(상승기류)분으로 보충하기 때문이다. 그림 1의 층후분류지역에서 으로 표시된 대류성 강수지역은 상승 기류가 강한 지역으로써, 대류성 강수에 의한 호우가 자주 발생 하는 지역이기도 하다(Uccellini and Johnson 1979, Funk 1991).

 

Bell and Lindner(1982)와 Funk(1991)는 층후분류형에 수증기 값 (가강수량)을 더하여 그림 2와 같이 중규모 호우구역을 보다 상세하게 찾아 내었다. 겨울철은 1000-500hPa 층후분류지역의 북쪽이면서 지상일기도 전선의 북쪽에 호우가 나타나며, 여름철은 층후분류지역이면서 지상일기도 전선의 남쪽에 호우구역이 나타난다.

 

그림 3은 여름철 1000-500hPa 층후분류지역에서 호우가 나타난 사례이다.

서해상에 위치한 지상 저기압의 동쪽지역에 우리나라가 위치할 때 지상에서는 남~남서풍이 불고, 대기 중층인 500hPa 고도에서는 남서~서풍의 바람이 불어 연직 층간 바람시어와 온난이류가 발생한다. 여기에 수증기량과 불안정을 동시에 보여줄 수 있는 K-Index를 중첩하면, 호우구역을 보다 상세하게 찾아낼 수 있다.

1000-500hPa 층후, K-Index 30이상 지역과 레이더 영상을 중첩한 영상으로 실제 호우구역이 이론과 비교적 잘 일치하는 것을 그림 4에서 볼 수 있다.

 

 

 

[ 참고문헌 ]

 

Bell, R. E., and A. J. Lindner, 1982: Ingredients which may combine to form the favorable pre-existing structure. National Meteorological Center in-house notes and schematical drawings of the ingredients necessary for heavy rainfall production. [Available from the Forecast Branch of NMC, Camp Spring, MD.]

Funk, T. W., 1991: Forecasting techniques utilized by the Forecasting Brach of the National Meteorological center during a major convective rainfall event. Wea. Forecasting, 6, 548-564.

Uccellini, L. W., and D. R. Johnson, 1979: The coupling of the upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107, 682-703

반응형
728x90
반응형

■ 층후는 대기의 주어진 층에 대한 평균 기온 지시자로 보통 1000-500hPa 층후를 이용하며 전선, 기단, 열적 이류 지역을 알아내는데 이용함.

낮은 층후는 차가운 공기에 상응하고, 높은 층후는 따뜻한 공기에 상응함.

따뜻한 이류는 대규모 상승, 구름, 비와 연관이 있고, 찬 이류는 침강역전, 맑은 하늘과 연관되어 있음.

한랭전선은 저기압성 곡률을 갖는 층후선(온도곡)과 연관이 있고, 온난전선은 고기압성 곡률을 갖는 층후선(온도능)과 관련이 있음.

층후선들의 능, 곡(온도능, 온도곡)들은 열적 기울기로써 서로 다른 기단을 분리할 수 있음. 지표의 전선은 보통 온도능, 온도곡의 따뜻한 가장자리에 위치함.

■ 온도곡을 따라 올라가는(즉, 온도곡 전방) 지상 저기압은 발달중이거나 성숙한 상태. 저기압이 온도곡의 극쪽이나 후퇴하고 있으면, 지상저기압은 폐색 중임.

■ 예보관이 익숙하지 않은 지역에서 강수형태를 예보할 때, 해수면 고도에서 비가 눈으로 바뀔 수 있는 지역 판단에 1000-500hPa 층후도의 5400m선을 먼저 이용할 수 있음.

 

출처: 손에 잡히는 예보기술(기상청)

 

 

층후는 서로 다른 두 기압면 사이의 수직 두께이다. 보통 미터 단위(gpm)를 사용하며, 기상청은 30m 또는 60m 간격으로 층후도를 그린다. 수치가 높은 층후 값은 따뜻한 공기를, 수치가 낮은 층후 값은 찬 공기를 의미한다. 층후는 가온도*를 측정하는 것과 같아 두 층간의 평균 가온도에 비례한다. 만일 기단이 습하고, 따뜻하다면 이 기단의 가온도는 실제 온도보다 약간 더 높다. 즉, 층후간격이 넓다.

 

* 가온도(Tv; Virtual temperature): 습윤공기와 같은 밀도를 가지는 기압조건에서의 건조공기의 온도. Tv = T + w/6 (w: 혼합비). 실제 기온과 1~2℃의 작은 차이를 보인다. 

 

 

예보분석을 위해서는 주로 1000hPa과 500hPa 사이의 층후를 많이 사용한다. 이 층은 대부분 기단들의 차이가 잘 나타나는 곳으로, 해수면과 약 5km 평균해수면고도 사이에 위치한다. 겨울철에는 1000-700hPa이나 1000-850hPa 층후가 전선과 기단을 정의하는데 더 유용하며. 기상청은 겨울철에 눈·비 구분을 위해 1000-700hPa 층후를 자주 사용한다.

 

층후도는 대부분 등압선과 함께 표출하며, 열적 대비와 기단에 대한 기압경도력(바람)과의 정확한 상관관계를 알려준다. 예로 아래 그림 7의 경우 지상일기도와 1000-500hPa일기도를 중첩한 것이다. 층후도는 열적 이류를 평가할 수 있는 신뢰도 높은 방법이다. 이류는 더 차갑거나 더 따뜻한 층으로 바람이 불 때 나타난다. 그림 7에서 보는 것처럼 등압선들과 층후선이 서로 교차하면서 네모난 상자형태로 그려진 곳에서 따뜻하거나 찬 이류가 일어나는 것을 짐작할 수 있다.

 

특정한 층후 선은 눈·비의 전이영역 판단에 활용한다. 기상청은 1000-500hPa 층후도에서 5400m선 이하를 눈으로 판단하며, 1000-700hPa 층후도는 2760m이하는 눈, 2820m이상은 비로 판단한다

 

 

 

 

 

[ 참고문헌 ]

홍성길, 1995: 기상분석과 일기예보, 교학연구사, 145-152

Tim Vasquez, 2003: Weather Map Handbook, Weather Graphic Technologies, 20-21

 

 

반응형
728x90
반응형

전선면 부근에서의 온난한 공기가 하강하거나 상승하는 정도에 따라 활승전선(Ana Front)과 활강전선(Kata Front)으로 구분한다. Browning(1985)에 의해서 제시된 이 전선 개념에 따르면, 중위도 온대 저기압의 구름과 강수 형태는 등온위 공기면 위를 이동하는 상승운동의 결과로 발생하는 것으로 본다.

 

온난 수송대는 한랭전선을 따라 남에서 북으로 이동하는데, 이 기류 중에 일부는 지상 전선의 전면에 남서류의 하층제트의 형태로 나타난다. 대부분의 기류가 한랭전선을 따라 이동하지만, 일부는 한랭전선을 가로질러 이동하면서 전선의 구조를 유지하는데 매우 중요한 역할을 수행한다. 

 

아래 그림 6에서 노란색으로 채워진 화살표 지역은 남서류의 온난수송대 흐름을 보여주며 화살표 지역 내에 빗금 친 부분은 강수 밴드를 보여준다. 활강전선은 한랭전선의 이동방향 전면(동쪽)에 위치하고, 활승 전선은 지상한랭전선의 후방에 위치한다. 이러한 형태의 온난수송대가 형성되면 한랭전선을 가로질러 2차 순환이 발생하고 독특한 형태의 활강 및 활승전선이 형성된다.

그림 7그림 6의 적색 실선을 따라 온난수송대 지역과 한랭전선을 가로지른 연직 단면도이다.

 

1. 활강전선(Kata front)

온난수송대가 한랭전선의 동쪽(전면)에 위치하면, 온난수송대 내의 남풍의 기류는 한랭전선을 서쪽에 두고 북쪽으로 이동하면서 상승한다. 이 상승운동으로 인하여 비교적 좁은 지역에서 강한 대류에 의한 호우현상이 발생하는데 이런 전선을 활강전선(Kata Front)이라고 부른다.

 

활승전선은 대류권 전체에서 전선면의 온난한 쪽에서의 상승 운동과 상층까지의 공기 포화가 특징인 반면, 활강전선의 경우에는 대류권 중·상층의 공기가 가라앉기 때문에 연직운동이 약해지며, 비단열적으로 공기가 온난하고 건조해지는 경향이 있다(그림 7 참조). 이때 중·상층운의 광범위한 층이 없어지고, 대신에 이 층은 약 3~4㎞까지 층적운(Sc)과 낮은 고적운(Ac) 층으로 구성된다. 이 엷은 구름은 따뜻한 공기에 머물기 보다는 전선대 어느 한 쪽으로 넓게 퍼지고 약한 강수를 내린다. 그렇지만, 한랭전선 끝단의 동쪽에서 북쪽으로 이동하는 온난수송대의 남풍류는 상층대기(건조공기)와 교차하면서 강한 대기불안정을 만들어 강한 호우구름이 발달하기도 한다. 활강전선은 한랭전선의 남쪽 끝단부터 전선의 동쪽에 남북으로 대류성 강수대가 있고, 지상한랭전선 부근으로는 약한 강수 혹은 강수현상이 없는 경우도 있다.

 

아래 그림 9는 활강전선에 대한 모식도이다.

지상한랭전선의 동쪽에 발달한 비구름대가 위치함을 알 수 있다. 상층의 한랭공기가 하강하면서 지상의 한랭전선 동쪽으로 이동하여 따뜻하고 습한 기류를 밀어붙여 지상의 한랭전선 전면에 강한 상승기류와 대류성 구름을 만든다.

 

 

아래 그림 8은 우리나라 부근에 활강전선이 나타났던 사례이다.

한랭전선면 부근으로 낮은 구름대만 보이고, 전선의 동쪽에 대류성 구름대가 나타나 있다. 상층대기에 한기가 급격히 남하할 경우 지상의 한랭전선 동쪽 으로 불안정에 의한 대류가 강화되기 때문이다. 한랭전선면 부근으로는 중·상층대기에 하강류가 강해 구름이 발달하기 어렵다. 지상일기도에서 폐색단계에 도달하기 전에 상층에 한기가 급격하게 지상의 한랭 전선 부근으로 이동할 때 발생하는 전선이 활강전선이므로 상층일기도 분석이 반드시 필요하다. 그림 8의 500hPa 일기도를 보면, 기압골이 쇄기형태로 남쪽으로 깊게 파인 형태로 발달된 모습이 보인다. 일반적 으로 전선을 가지고 발달하는 지상저기압의 서쪽으로 상층골이 위치하지만, 활강전선의 경우 지상저기압의 위치와 큰 차이가 없는 것이 특징이다. 활강전선의 경우 지상의 한랭전선 부근에 강수가 없으므로 예보관은 상층골의 위치와 위성영상을 통해 활강전선을 구분할 수 있어야 한다. 서에서 동으로 이동하는 기압계의 흐름을 고려하여 활강전선의 대류성 강수대가 빠져나간 이후에 지상의 풍계는 변화 없이 강수현상이 종료 되는 것도 유념해야 한다. 강수가 종료된 후, 지상의 한랭전선이 빠져나간 후 풍계가 남서에서 북서로 전환 된다. 우리나라를 지나가는 한랭전선과 연결된 상층골은 일반적으로 지상에서 상층으로 서에서 동으로 기울어진 채 동쪽으로 이동하지만, 활강전선의 경우 북서쪽에서 빠르게 우리나라 상공으로 이동하면서 지상의 한랭전선을 따라잡는 경우에 종종 발생한다.

 

 

 

 

 

2. 활승전선(Ana front)

활승전선은 지상의 한랭전선 후방에 위치한다. 온난수송대에 동반되는 기류가 한랭전선에 동반된 공기와 충돌한 후 바로 전방(동쪽)을 향하지 않고 한랭전선의 후방(서쪽)을 향하는 상승운동을 보이는 경우를 활승 전선(Ana Front)이라고 부른다. 일반적인 중위도 전선저기압의 한랭전선 강수대와 일치하는 전선이다.

 

활강전선과 활승전선은 기류 그 자체에 의해서 결정되는 것이 아니라 한랭전선에 상대적인 기류의 방향에 따른 상승운동의 크기에 따라 결정되기 때문에 온난수송대 뿐만 아니라 한랭전선의 이동방향과 속도도 활승·활강 전선의 형성과 강도에 영향을 미친다.

 

기상 위성 분석을 예보에 많이 활용하는 영국이나 미국의 경우에는 위성 영상의 형태와 일기도 분포를 종합하여 활승·활강 전선 지역을 구분하고 있다. 우리나라에서 한랭전선 통과시에는 주로 활승전선이 나타나며, 이 때는 일반적인 한랭전선 접근에 따른 예보가 가능하다. 전선 접근시 강수가 시작되고 지상의 바람이 남서에서 북서로 급변하면서 강한 강수와 함께 기온이 하강하고 이후 1~2시간 내 강수가 종료되는 특징을 보인다.

 

그림 10은 활승전선의 특징을 요약한 모식도이다.

일반적인 한랭전선 강수대의 특징과 유사하게 지상의 한랭전선 부근과 그 서쪽에 주 강수대가 위치한다.

 

아래 그림 11은 우리나라 부근에 활승전선이 나타났던 사례이다.

 

 

3. 한랭수송대와 관련된 전선특징

온난수송대는 저기압 남쪽의 온난구역에서 북상하는 기류이며, 한랭수송대는 온난전선의 북쪽에 위치한 차가운 공기가 더 차가운 공기쪽으로 이동하면서 상승하는 기류를 말한다. 강하게 발달하는 저기압의 경우 그림 12와 같이 한랭수송대가 온난전선의 북쪽에서 저기압 중심 주위로 이동한다. 온난전선의 북쪽에 위치한 지상의 동풍류는 저기압 북쪽을 따라 이동하면서 더 차가운 공기 위로 상승한다. 저기압 중심의 북쪽에 이르러 상승하던 기류는 2개의 기류로 바뀌는데 저기압 중심의 북서쪽으로는 계속해서 상승하는 기류와 저기압 중심의 남서쪽으로 하강하는 기류로 나누어진다. 상승하는 기류는 동풍에서 남풍으로 전환 후 상층 대기에 이르러 서풍류로 전환하면서 상층제트기류와 합류한다. 즉, 지상에서 상층으로 고기압성 기류 전환과 함께 상승하면서 대류성 구름과 비교적 강한 강수가 동반된다. 반면, 하강하는 기류는 동풍에서 북풍으로 전환 후 하층대기에 이르러 서풍류로 전환한다. 중·상층대기에서 지상으로 저기압성 풍계로 방향전환과 함께 하강하는 기류는 다시 한랭전선 후면에서 차가운 공기와 합쳐지면서 저기압의 발달에 기여한다. 

 

 

그림 13의 위성영상에서 한랭수송대에서 상승하는 기류인 A 지역은 대류성 구름이 위치한 것을 볼 수 있으며, 하강하는 기류가 위치한 B 지역은 중·하층운이 흩어져 있는 모습을 볼 수 있다. 1차 온난수송대는 활강전선에서 설명한 온난수송대(W1)를 의미하며, 이 온난수송대가 지상의 한랭전선과 간격이 커질 경우 2차 온난수송대(W2)가 생성된다. 2차 온난수송대는 한랭수송대와 만나 상승류가 강화되면서 저기압 중심부근 에서 대류권 상부까지 상승하여 대류성 구름을 형성한다.

 

 

 

 

 

 

 

 

[ 참고문헌 ]

김광식, 1992: 기상학사전, 향문사.

민경덕, 민기홍 역, 2009: 대기환경과학, C. Donald Ahrens 저, 시그마프레스

기상청, 예보기술팀, 2012: 예보관 중급훈련교재

기상청, 손에 잡힌는 예보 기술

Browning, K. A., 1985: Conceptual models of precipitation system. Meteor. Mag., 114, 293-316.

C. Donald Ahrens, 2007: Meteorology today, P299.

Djuric. D., 1994: Weather analysis. Frederick K. Lutgens, et. al, 2009: Pearson Education, Inc., pp 311.

Vasquez. T., 2002: Weather forecasting handbook. weather graphics technologies, pp 75

반응형
728x90
반응형

전선면 부근에서의 온난한 공기가 하강하거나 상승하는 정도에 따라 활승전선(Ana Front)과 활강전선(Kata Front)으로 구분한다. Browning(1985)에 의해서 제시된 이 전선 개념에 따르면, 중위도 온대 저기압의 구름과 강수 형태는 등온위 공기면 위를 이동하는 상승운동의 결과로 발생하는 것으로 본다.

 

온난 수송대는 한랭전선을 따라 남에서 북으로 이동하는데, 이 기류 중에 일부는 지상 전선의 전면에 남서류의 하층제트의 형태로 나타난다. 대부분의 기류가 한랭전선을 따라 이동하지만, 일부는 한랭전선을 가로질러 이동하면서 전선의 구조를 유지하는데 매우 중요한 역할을 수행한다. 

 

아래 그림 6에서 노란색으로 채워진 화살표 지역은 남서류의 온난수송대 흐름을 보여주며 화살표 지역 내에 빗금 친 부분은 강수 밴드를 보여준다. 활강전선은 한랭전선의 이동방향 전면(동쪽)에 위치하고, 활승 전선은 지상한랭전선의 후방에 위치한다. 이러한 형태의 온난수송대가 형성되면 한랭전선을 가로질러 2차 순환이 발생하고 독특한 형태의 활강 및 활승전선이 형성된다.

그림 7그림 6의 적색 실선을 따라 온난수송대 지역과 한랭전선을 가로지른 연직 단면도이다.

 

1. 활강전선(Kata front)

온난수송대가 한랭전선의 동쪽(전면)에 위치하면, 온난수송대 내의 남풍의 기류는 한랭전선을 서쪽에 두고 북쪽으로 이동하면서 상승한다. 이 상승운동으로 인하여 비교적 좁은 지역에서 강한 대류에 의한 호우현상이 발생하는데 이런 전선을 활강전선(Kata Front)이라고 부른다.

 

활승전선은 대류권 전체에서 전선면의 온난한 쪽에서의 상승 운동과 상층까지의 공기 포화가 특징인 반면, 활강전선의 경우에는 대류권 중·상층의 공기가 가라앉기 때문에 연직운동이 약해지며, 비단열적으로 공기가 온난하고 건조해지는 경향이 있다(그림 7 참조). 이때 중·상층운의 광범위한 층이 없어지고, 대신에 이 층은 약 3~4㎞까지 층적운(Sc)과 낮은 고적운(Ac) 층으로 구성된다. 이 엷은 구름은 따뜻한 공기에 머물기 보다는 전선대 어느 한 쪽으로 넓게 퍼지고 약한 강수를 내린다. 그렇지만, 한랭전선 끝단의 동쪽에서 북쪽으로 이동하는 온난수송대의 남풍류는 상층대기(건조공기)와 교차하면서 강한 대기불안정을 만들어 강한 호우구름이 발달하기도 한다. 활강전선은 한랭전선의 남쪽 끝단부터 전선의 동쪽에 남북으로 대류성 강수대가 있고, 지상한랭전선 부근으로는 약한 강수 혹은 강수현상이 없는 경우도 있다.

 

아래 그림 9는 활강전선에 대한 모식도이다.

지상한랭전선의 동쪽에 발달한 비구름대가 위치함을 알 수 있다. 상층의 한랭공기가 하강하면서 지상의 한랭전선 동쪽으로 이동하여 따뜻하고 습한 기류를 밀어붙여 지상의 한랭전선 전면에 강한 상승기류와 대류성 구름을 만든다.

 

 

아래 그림 8은 우리나라 부근에 활강전선이 나타났던 사례이다.

한랭전선면 부근으로 낮은 구름대만 보이고, 전선의 동쪽에 대류성 구름대가 나타나 있다. 상층대기에 한기가 급격히 남하할 경우 지상의 한랭전선 동쪽 으로 불안정에 의한 대류가 강화되기 때문이다. 한랭전선면 부근으로는 중·상층대기에 하강류가 강해 구름이 발달하기 어렵다. 지상일기도에서 폐색단계에 도달하기 전에 상층에 한기가 급격하게 지상의 한랭 전선 부근으로 이동할 때 발생하는 전선이 활강전선이므로 상층일기도 분석이 반드시 필요하다. 그림 8의 500hPa 일기도를 보면, 기압골이 쇄기형태로 남쪽으로 깊게 파인 형태로 발달된 모습이 보인다. 일반적 으로 전선을 가지고 발달하는 지상저기압의 서쪽으로 상층골이 위치하지만, 활강전선의 경우 지상저기압의 위치와 큰 차이가 없는 것이 특징이다. 활강전선의 경우 지상의 한랭전선 부근에 강수가 없으므로 예보관은 상층골의 위치와 위성영상을 통해 활강전선을 구분할 수 있어야 한다. 서에서 동으로 이동하는 기압계의 흐름을 고려하여 활강전선의 대류성 강수대가 빠져나간 이후에 지상의 풍계는 변화 없이 강수현상이 종료 되는 것도 유념해야 한다. 강수가 종료된 후, 지상의 한랭전선이 빠져나간 후 풍계가 남서에서 북서로 전환 된다. 우리나라를 지나가는 한랭전선과 연결된 상층골은 일반적으로 지상에서 상층으로 서에서 동으로 기울어진 채 동쪽으로 이동하지만, 활강전선의 경우 북서쪽에서 빠르게 우리나라 상공으로 이동하면서 지상의 한랭전선을 따라잡는 경우에 종종 발생한다.

 

 

 

 

 

2. 활승전선(Ana front)

활승전선은 지상의 한랭전선 후방에 위치한다. 온난수송대에 동반되는 기류가 한랭전선에 동반된 공기와 충돌한 후 바로 전방(동쪽)을 향하지 않고 한랭전선의 후방(서쪽)을 향하는 상승운동을 보이는 경우를 활승 전선(Ana Front)이라고 부른다. 일반적인 중위도 전선저기압의 한랭전선 강수대와 일치하는 전선이다.

 

활강전선과 활승전선은 기류 그 자체에 의해서 결정되는 것이 아니라 한랭전선에 상대적인 기류의 방향에 따른 상승운동의 크기에 따라 결정되기 때문에 온난수송대 뿐만 아니라 한랭전선의 이동방향과 속도도 활승·활강 전선의 형성과 강도에 영향을 미친다.

 

기상 위성 분석을 예보에 많이 활용하는 영국이나 미국의 경우에는 위성 영상의 형태와 일기도 분포를 종합하여 활승·활강 전선 지역을 구분하고 있다. 우리나라에서 한랭전선 통과시에는 주로 활승전선이 나타나며, 이 때는 일반적인 한랭전선 접근에 따른 예보가 가능하다. 전선 접근시 강수가 시작되고 지상의 바람이 남서에서 북서로 급변하면서 강한 강수와 함께 기온이 하강하고 이후 1~2시간 내 강수가 종료되는 특징을 보인다.

 

그림 10은 활승전선의 특징을 요약한 모식도이다.

일반적인 한랭전선 강수대의 특징과 유사하게 지상의 한랭전선 부근과 그 서쪽에 주 강수대가 위치한다.

 

아래 그림 11은 우리나라 부근에 활승전선이 나타났던 사례이다.

 

 

3. 한랭수송대와 관련된 전선특징

온난수송대는 저기압 남쪽의 온난구역에서 북상하는 기류이며, 한랭수송대는 온난전선의 북쪽에 위치한 차가운 공기가 더 차가운 공기쪽으로 이동하면서 상승하는 기류를 말한다. 강하게 발달하는 저기압의 경우 그림 12와 같이 한랭수송대가 온난전선의 북쪽에서 저기압 중심 주위로 이동한다. 온난전선의 북쪽에 위치한 지상의 동풍류는 저기압 북쪽을 따라 이동하면서 더 차가운 공기 위로 상승한다. 저기압 중심의 북쪽에 이르러 상승하던 기류는 2개의 기류로 바뀌는데 저기압 중심의 북서쪽으로는 계속해서 상승하는 기류와 저기압 중심의 남서쪽으로 하강하는 기류로 나누어진다. 상승하는 기류는 동풍에서 남풍으로 전환 후 상층 대기에 이르러 서풍류로 전환하면서 상층제트기류와 합류한다. 즉, 지상에서 상층으로 고기압성 기류 전환과 함께 상승하면서 대류성 구름과 비교적 강한 강수가 동반된다. 반면, 하강하는 기류는 동풍에서 북풍으로 전환 후 하층대기에 이르러 서풍류로 전환한다. 중·상층대기에서 지상으로 저기압성 풍계로 방향전환과 함께 하강하는 기류는 다시 한랭전선 후면에서 차가운 공기와 합쳐지면서 저기압의 발달에 기여한다. 그림 13의 위성영상에서 한랭수송대에서 상승하는 기류인 A 지역은 대류성 구름이 위치한 것을 볼 수 있으며, 하강하는 기류가 위치한 B 지역은 중·하층운이 흩어져 있는 모습을 볼 수 있다. 1차 온난수송대는 활강전선에서 설명한 온난수송대(W1)를 의미하며, 이 온난수송대가 지상의 한랭전선과 간격이 커질 경우 2차 온난수송대(W2)가 생성된다. 2차 온난수송대는 한랭수송대와 만나 상승류가 강화되면서 저기압 중심부근 에서 대류권 상부까지 상승하여 대류성 구름을 형성한다.

 

 

 

[ 참고문헌 ]

김광식, 1992: 기상학사전, 향문사.

민경덕, 민기홍 역, 2009: 대기환경과학, C. Donald Ahrens 저, 시그마프레스

기상청, 예보기술팀, 2012: 예보관 중급훈련교재

기상청, 손에 잡힌는 예보 기술

Browning, K. A., 1985: Conceptual models of precipitation system. Meteor. Mag., 114, 293-316.

C. Donald Ahrens, 2007: Meteorology today, P299.

Djuric. D., 1994: Weather analysis. Frederick K. Lutgens, et. al, 2009: Pearson Education, Inc., pp 311.

Vasquez. T., 2002: Weather forecasting handbook. weather graphics technologies, pp 75

반응형
728x90
반응형

아래 그림 2와 같이 전선은 기단의 종류에 따라 북극전선(Arctic Front), 한대전선(Polar Front) 등으로 분류 할 수 있고, 기단의 운동에 따라 온난전선(Warm Front), 한랭전선(Cold Front), 폐색전선(Occluded Front), 정체전선(Stationary Front) 등으로 분류할 수 있으며, 전선의 활동 여부에 따라 활성 전선(Active Front), 비활성 전선(Inactive Front)로 분류할 수 있다. 마지막으로 전선면을 따라 난기의 상승 여부에 따라 활승전선(Ana Front)관 활강전선(Kata Front)로 분류할 수 있다.

 

 

1. 한랭전선

한랭전선은 온대저기압 중심의 남서쪽에 있으며, 한랭한 공기가 온난한 공기 쪽으로 이동해 파고들면서 온난습윤한 공기를 강제로 상승시키는 형태의 전선을 말한다. 한랭전선은 한랭한 공기가 온난한 공기 속을 쐐기 모양으로 진행하는 전면에 위치한다. 일반적으로 한랭전선은 서로 접촉하고 있는 기단의 물리적 성질 차이가 크기 때문에 스콜선, 강한 뇌우, 집중호우, 착빙, 돌풍, 우박 등과 같은 비교적 위험한 기상현상이 자주 발생한다. 아래 표 2는 한랭전선 주변의 주요 기상 현상을 정리한 것이다.

2. 온난전선

온난전선은 온대저기압의 전면부(남동쪽)에 있으며, 온난한 공기가 한랭한 공기 쪽으로 이동해 가는 전선을 말한다(아래 그림 3 참조). 온난전선이 통과할 때의 기압, 기온 및 바람 등의 변화는 한랭전선만큼 뚜렷하지 않을 때가 많다. 이것은 전선면의 기울기가 일반적으로 완만하기 때문이다. 즉, 온난공기 아래에 있는 한랭공기의 두께는 전선 부근에서 대단히 얇아서 지표면 근처의 가열·증발 및 강수 등에 의하여 쉽게 변질되어 전선을 경계로 양쪽 기단의 성질 차이가 작아지기 때문이다.

 

여름철로 가까워질수록 온난전선 상에서 불안정한 대기구조가 나타나기도 한다. 불안정한 공기는 상승기류를 일으켜 전선의 전방에 적란운과 뇌우를 발생시킨다. 따라서 강수는 호우와 안개비가 교대로 내리며, 동시에 뇌우도 발생한다

그림 3. 온난전선의 연직단면 모식도

 

 

 

 

 

3. 폐색전선

폐색전선은 온대저기압 발달과정의 마지막 단계로, 이동 속도가 빠른 한랭전선이, 25km/h의 이동 속도를 보이는 온난전선을 추월하여 합쳐짐으로써 폐색상태가 된 전선을 말한다(그림 4 참조). 저기압 주위에서 한랭전선이 온난전선보다 빨리 진행하는 경우, 온난전선은 그림과 같이 상공으로 밀려 올라간다. 이 때 폐색 전선에서는 매우 높은 곳에 구름이 생겨 산맥 등에 강한 비를 내리게 하는 일도 있다. 폐색전선에서는 전선 양쪽의 기온차가 그리 크게 나타나지 않는 것이 보통이다.

 

지상에서 보면, 전선의 폐색이 일어나면 따뜻한 공기는 저기압 중심으로부터 떨어져(폐색) 나오게 된다. 이때 폐색전선과 온난전선 그리고 한랭전선이 만나는 점을 삼각점이라고 부른다.

 

폐색은 온난 폐색과 한랭 폐색으로 나눌 수 있는데, 폐색과정에서 한랭 전선 후방의 공기가 보다 차기 때문에 전방의 찬 공기 밑으로 파고들 때는 한랭 폐색전선이 생기고, 반대로 온난전선 전방에 보다 찬 공기가 있을 때는 온난 폐색전선이 생긴다. 폐색전선에서의 기상 현상은 한랭 전선과 온난전선의 기상 현상이 혼합되어서 나타난다. 즉, 한랭전선의 특징인 스콜 및 뇌우, 온난전선의 특징인 낮은 구름이 겹쳐서 나타난다. 강한 바람은 폐색전선의 북쪽 끝에 있는 강한 저기압 주위에서 나타 난다. 따라서 예보관들은 폐색전선에서 기상상태가 급격히 변하고, 폐색전선의 발달 초기에 위험기상이 나타난다는 사실에 유의해야 한다.

4. 정체전선

아래 그림 5와 같이 정체전선은 온대저기압의 초기 단계나 2개의 기단이 균형을 이루어서 어느 한 기단이 다른 기단을 침투하지 못하고 경계면이 위도와 거의 평행하게 길게 형성되어 균형을 이루고 있는 상태에서 발생 하며, 비교적 긴 시간 동안 그 형태를 유지한다.

 

이 전선의 특징은 동서 방향으로 이동보다는 남북으로 진동 하는 일이 많으며, 어떤 때는 온난전선과 같은 성질을 나타내고, 어떤 때는 한랭전선과 같은 성질을 나타 낸다. 대표적으로 우리나라 여름철 장마전선은 이와 같은 정체전선의 일종이다. 이 정체전선이 남쪽으로 이동할 경우 북쪽의 차고 건조한 공기가 따뜻하고 습윤한 공기를 파고드는 한랭전선형 구조가 나타나므로 뇌우와 호우가 발생할 확률이 높다. 우리나라에서 장마초기에 북상하는 장마전선은 온난전선형 구조를 보이나 장마중기부터는 남북진동을 하면서 남쪽으로 이동할 경우 한랭전선형 구조에서 집중호우가 발생 하는 경우가 있다. 특히, 여름에서 가을로 계절이 바뀌는 시기에 발생하는 정체전선의 경우 장마전선보다 더욱 강한 강도의 호우와 위험기상이 발생할 수 있다.

 

 

 

 

반응형
728x90
반응형

전선이란

 

전선은 온도, 밀도 등 물리적 성질이 다른 두 개의 기단 사이에, 또는 같은 기단 내에서도 변질된 기단과 덜 변질된 기단의 사이에 형성되는 경계선을 의미한다. 유체인 두 개의 기단이 접촉하게 되면 수직으로 나란하게 서는 것이 아니라 기단의 성격에 따라 연직방향으로 기울어지게 되는데, 지표면 에서 연직방향으로의 전선의 연장선을 전선면(Frontal Surface) 혹은 전선대 (Frontal Zone)라고 부른다.

 

전선대에서 가장 기압·기온경도가 큰 지역에 전선(Front)이 위치한다(그림 1 참조). 사실상 기단, 전선대, 전선은 상대적인 개념으로 이해하는 것이 좋다. 왜냐하면 전선이라고 해서 수학적인 하나의 선이 아니라 실제로는 어느 정도의 폭을 가진 물리적 성질이 다른 두 기단의 전이층(Transition Layer)로 보는 것이 좋기 때문이다.

 

일반적으로 종관규모 에서 기단은 1,000㎞×1,000㎞, 전선대는 1,000㎞×100㎞, 전선은 1,000㎞ ×10㎞ 내외의 수평 규모를 가진다. 따라서 기단 규모 이상의 공간적인 범위를 가지는 지상 일기도에서 전선은 하나의 선으로 표현할 수밖에 없다. 종관규모 에서 전선은 1,000km 정도의 수평 규모를 가지지만 중규모로 내려 오면 1km 이하의 규모까지 줄어든다. 뇌우의 하강기류에 동반되어 나타나는 돌풍 전선(Gust Front)이 좋은 예가 될 수 있다. 또한 많은 경우에 일기도 상에서 뚜렷하게 전선으로 구분하여 분석할 수 없을 만큼 전이층의 범위가 좁은 경우도 자주 나타난다. 따라서 전선을 기단 사이의 물리적 성질의 차이뿐만 아니라 경계(boundary)의 개념으로 해석하는 경우가 많다. 기단 사이의 차이가 아닌 작은 규모의 운동은 큰 육지와 해양, 강수지역과 무강수 지역, 평지와 산악 등과 같이 환경적인 경계에 따라서도 급격하게 발달할 수 있기 때문에 예보 업무에 있어서 특히 중규모 기상현상을 분석할 때는 이러한 경계의 존재 여부를 신중하게 고려해야 한다.

 

전선의 특징

1. 기온의 불연속

기온은 전선을 구분할 때 가장 알기 쉬운 불연속 요소중에 하나이다. 지표면 부근에서 전선이 통과할 때 보통 현저한 기온 변화가 일어난다. 특히 한랭전선을 경계로 기온의 차이가 크게 나타난다. 기온의 변화 양과 변화율은 전선의 강도에 따라 각기 다르게 나타난다. 폭이 좁은 전선에서는 급격하고도 큰 온도 변화가 나타나는 데 반해서, 강도가 약하거나 경계가 불분명한 전선에서는 점진적이면서 변화가 적다. 그림 1(a)는 등온선과 등습구온위선으로 표시된 전선의 연직분포를 나타낸 것이다. 등습구온위선은 교차하지 않고 전선과 나란히 놓여 일직선을 이루며, 수평 경도가 큰 부분은 전선대를 나타낸다. 두 기단을 분리하는 한랭전선과 전선면은 그림 1(b)와 같이 찬 공기 쪽으로 기울어져 있다. 그러나 전선의 기울기는 실제보다 과장되어 가파르게 묘사되었음에 유의하여야 한다. 실제 전선의 기울기는 1:100 정도이다. 따뜻한 공기와 찬 공기는 밀도가 다르기 때문에 두 공기는 서로 섞이지 않고, 보통 따뜻하고 가벼운 공기가 차갑고 무거운 공기 위로 올라가는 상승 운동이 존재한다. 이러한 상승 운동은 팽창과 단열냉각을 이끌고, 순차적으로 응결, 구름의 형성, 그리고 비를 내리게 한다. 비록 온난전선과 한랭전선이 서로 다른 특징을 보이지만, 두 전선 사이에 열적 구조가 다르지는 않다.

 

 

2. 노점온도의 불연속

일기도 상에서 온도 불연속이 작게 나타나더라도 습도의 차이에 따라서 중규모 위험기상들이 발생할 수 있다. 동일한 기온에서 온난 건조한 공기의 밀도는 온난 다습한 공기에 비해서 크기 때문에 마치 한랭 전선의 형태와 같이 온난 건조한 공기가 온난 다습한 공기의 밑으로 파고들어서 강제 상승력을 만들어 내고 그 결과 강한 대류활동이 발생한다. 이러한 형태의 전선은 우리나라에서 장마 말기나 2차 우기(가을우기)에 나타나며, 집중호우를 동반하기도 한다.

 

3. 바람의 불연속

북반구 중위도의 경우 한랭전선은 한랭 건조한 기단과 온난 습윤한 기단 사이에서 발생하며 이때 바람은 한랭전선 후면에서는 북서에서 서풍 계열이 한랭전선 전면에서는 남서 계열의 바람이 불며, 온난전선의 전면에서는 동풍 계열의 바람이 부는 것이 일반적이다. 이러한 전선부근의 바람 변화는 예보관이 일기도 상에서 전선의 위치를 직관적으로 파악하는데 유리하다. 특히 기압과 온도에 대한 정보가 많지 않은 해양과 관측소가 부족한 지역에서 전선의 위치는 바람의 변화를 통해서 파악할 수 있다. 북반구 중위도의 바람은 상층으로 갈수록 서풍계열로 바뀌는 경우가 대부분이다. 따라서 한랭전선의 경우에는 지표면에서 상층으로 갈수록 바람의 방향이 반시계 방향으로 바뀌는 반전(Backing) 현상이, 온난전선의 경우에는 바람이 시계 방향으로 바뀌는 순전(Veering) 현상이 일반적이다.

 

4. 기압의 불연속

전선은 보통 기압골을 따라 존재하기 때문에 전선에서 멀어질수록 기압은 전선면 보다 높게 나타나는 것이 일반적이다. 따라서 전선이 관측소를 향해서 접근하고 있을 때 기압은 감소하고 전선이 통과하고 난 후에는 급격히 증가하는 것이 일반적이다.

반응형
728x90
반응형

지도 저작권 없는 세계지도 데이터 

 

Drawing beautiful maps programmatically with R, sf and ggplot2 — Part 1: Basics (r-spatial.org)

 

Drawing beautiful maps programmatically with R, sf and ggplot2 — Part 1: Basics

view raw Rmd EDIT: Following a suggestion Adriano Fantini and code from Andy South, we replaced rworlmap by rnaturalearth. This tutorial is the first part in a series of three: In this part, we will cover the fundamentals of mapping using ggplot2 associate

r-spatial.org

 

R에서 사용하기 위해 사전에 설치할 패키지들

install.packages("rnaturalearth")

# 아래 패키지 설치에 시간이 많이 걸린다.
install.packages("ggspatial")  
install.packages("sf")
install.packages("s2")

 

예제 코드 

 

library("ggspatial")
ggplot(data = world) +
    geom_sf() +
    annotation_scale(location = "bl", width_hint = 0.5) +
    annotation_north_arrow(location = "bl", which_north = "true", 
        pad_x = unit(0.75, "in"), pad_y = unit(0.5, "in"),
        style = north_arrow_fancy_orienteering) +
    coord_sf(xlim = c(-102.15, -74.12), ylim = c(7.65, 33.97))

## Scale on map varies by more than 10%, scale bar may be inaccurate

 

 

 

 

 

rnaturalearth package - RDocumentation

 

rnaturalearth package - RDocumentation

install_rnaturalearthhires

www.rdocumentation.org

 

 

 

 

반응형
728x90
반응형

마찰 속도는 어떻게 정의되는 양인가? 또 이것은 Reynolds stress 와 어떠한 관계가 있는가? 

 

정적으로 불안정한 대기에서 작은 에디 연직 환합과정을 설명함으로써 난류 열 플럭의 방향을 경정하라. 

 

난류 운동량 방정식에서 meadn advection term은 무엇을 가정하면 무시되는지 해당 가정을 모두 쓰시오.

 

 

난류가 존재하는 경우에 mean variables를 예보하기 위하여는 반드시 난류항이 포함되어야 한다. 

(1) 그 항은 어떤 물리적 의미를 갖고 있나?

(2) 평균 온위를 예보하기 위하여 포함되어야 할 난류항의 수학적 표현을 쓰시오. 

 

TKE의 주요 항들(shear, buoyant, dissipation 항)의 크기를 eddy size 의 함수로 그림을 그리고, 에너지 흐름을 설명하시오. 

 

다음 관측치를 사용하여 물음에 답하라.

 

 

Reynolds stress와 Viscos shear stress 를 비교설명하시오. 

 

마찰 속도를 Reynolds stress 로 정의하시오. 

 

마찰 속도는 어느 층에서 velocity scale로 사용되는가? 

 

정적 안정도와 동적 안정도의 경우, 각각 무슨 현상(과정)이 대기 시스템을 안정화 시키는가? 

 

 

K-theory는 어느 경우에 잘 맞지 않는가? 

 

K-theory을  각각 사용하여 kinematic heat flux 를 표현하라. 

 

mixing length (L)을  각각 사용하여 kinematic heat flux 를 표현하라. 

 

 

 

 

반응형
728x90
반응형

Making an Ultrasonic Anemometer | Embedded Lab (embedded-lab.com)

 

Making an Ultrasonic Anemometer | Embedded Lab

Making an Ultrasonic Anemometer An anemometer is a common instrument at a weather station. It is used to measure the wind speed and wind direction. The most common type of anemometer uses mechanical sensors consisting of three or four hemispherical cups m

embedded-lab.com

 

Ultrasonic Anemometer | soldernerd

 

Ultrasonic Anemometer

This page serves as a directory of all my posts and downloads related to my Arduino based Ultrasonic Anemometer. First Attempt with an ArduinoUno and two separate boards Part 1: Part 2: Part 3: Par…

soldernerd.com

GitHub - soldernerd/UltrasonicAnemometer: Standalone Ultrasonic Anemometer based on a PIC32

 

GitHub - soldernerd/UltrasonicAnemometer: Standalone Ultrasonic Anemometer based on a PIC32

Standalone Ultrasonic Anemometer based on a PIC32. Contribute to soldernerd/UltrasonicAnemometer development by creating an account on GitHub.

github.com

 

반응형
728x90
반응형
반응형

1. 한랭전선형 대설 사례(2011년 1월 23일)

한랭전선이 서울·경기 지방을 통과하면서 중부지방에 발생한 대설 사례이다 (그림 5)

그림 5. 2011년 1월 23일 (a) 9시, (b) 15시 지상일기도

 

아래 그림 6은 2011년 1월 23일 9시에 생산된 23일 15시 각 등온위면 예측장이다.

그림 6(a)의 275K 등온위면 에서 화살표가 나타내는 것은 보하이만 부근인 약 750hPa에서 서울 근처 850hPa로 진행하는 하강기류를 의미한다. 

그림 6(b)의 280K 등온위면에서 한반도는 하강기류가 나타나며, 산둥반도에서 경기만으로 약 700~ 650hPa 등압선을 따라 상승기류가 존재한다. 그림 6(c)의 290K 등온위면에서 500hPa 등압선이 오산 부근에 있으며, 오산 상공과 서해상에 상승기류가 존재한다. 따라서, 오산 부근을 기준으로 하층대기에서는 하강기류가, 중·상층대기에서는 상승기류가 동반되어 지상에서 상층으로 갈수록 서쪽으로 기울어진 한랭 전선 형태를 보인다. 또한 그림 6(c)의 290K 등온위면에서 1.5PVU 이상 지역이 오산 부근에 위치한다. 1.5PVU는 대류권계면을 의미하며, 그림처럼 비정상적으로 1.5PVU 이상 값이 남쪽으로 내려온 것은 성층권 공기의 침강이나 극공기의 남하로 발생되는 대류권계면 접힘 현상으로 알려져 있다(Bluestein 1993). 

그림 7은 이상의 분석을 요약한 모식도이다.

 

 

그림 8은 같은 시각(15시) 오산 단열선도와 레이더 영상이다. 그림 8(a)를 보면, 우리나라에 산발적인 강수 에코가 분포하며, 서울·경기 서해안에 발달한 에코가 보인다. 이 발달한 에코는 남동쪽으로 움직이면서 서울은 14시부터 16시까지 2.7cm, 수원은 15시부터 17시까지 5.1cm 적설을 기록했다. 오산 단열선도에서 15시에 관측된 붉은색의 온도선과 노점온도선의 분포를 살펴보면, 지상에서 500hPa 까지 포화된 것을 확인할 수 있다. 500hPa 고도에서는 온도선의 모습이 권계면 형태(고도상승에 따라 기온 역전)를 보여주는데, 이는 그림 6(c)의 290K 등온위면에서 1.5PVU값이 이 지역에 위치한 것과 일치한다.

 

 

 

2. 온난전선형 대설 사례(2010년 1월 4일)

지상저기압 중심이 아래 그림 9와 같이 충청지방을 통과하면서 저기압의 동쪽과 북쪽에 위치한 서울·경기 지역에 대설이 발생하였다. 

 

그림 9. 2010년 1월 4일 (a) 3시, (b) 9시의 지상일기도

 

아래 그림 10(a)의 280K 등온위면에서 등압선을 가로지르는 남풍의 기류는 제주 부근에 위치한 900hPa 등압선부터 북한에 위치한 700hPa 등압선까지 이동할 수 있다. 그림 10(b)의 오산 단열선도 약 925~ 800hPa 고도에서 난기 유입에 의한 지상과의 역전층이 보이는데, 상승하는 남서기류의 영향으로 많은 눈이 발생하였다. 온난전선 부근의 강수지역 특징처럼 지표부근은 비교적 한랭하고 상층에는 온난·다습한 공기가 유입되어 층운형 강수가 나타났다. 온난전선 북쪽과 동쪽은 폭넓은 강수대가 분포하고 있어 지속 시간이 길어 대설로 발생하기 쉬운 형태지만 따뜻한 대기에서 발생하므로 눈으로 내리기가 쉽지 않다. 그림 10(c)의 레이더 영상에서 강수 에코의 분포는 그림 10(a)의 상승기류 지역과 동일하게 나타난다. 온난전선형 대설은 지상저기압 중심의 북쪽과 동쪽에서 발생하나 대기의 기온이 충분히 낮아야 하며, 지표부근을 제외한 대기 전 층으로 난기가 유입되므로 지상의 기온은 반드시 영하이어야 한다(예보기술팀 2011). 

 

 

 

 

[ 참고문헌 ]

김광식, 1992: 기상학사전, 향문사, p387.

예보기술팀, 2011: 손에잡히는 예보기술 5호, 등온위면 분석 예보기술팀, 2011: 한눈에 보는 대설개념모델

홍성길, 2006: 기상분석과 일기예보, 교학연구사, p100-101.

Bluestein, H. R., 1992: Isentropic surfaces basic concepts energy equations dimensional analysis. Vol. I, 23 pp.

Bluestein, H. R., 1993: Synoptic-dynamic meteorology in midlatitudes. Vol. II: observations and theory of weather systems. Oxford University Press, 594 pp.

Ken Crawford 2010: The value of isentropic analysis in a modern forecast office. 지식, 경험, 노하우(지.경.노) 발표자료

Moore, J. T., 2003: Isentropic analysis workshop, millersville university Isentropic Workshop: 5 April 2003

 

 

출처: 손안에 잡히는 예보기술: 기상청

반응형
728x90
반응형

2011년 5월 1~3일 우리나라 전역에 발생한 황사

호우, 대설 등 강수 분석 및 예측에는 상승기류와 저기압성 순환(수렴)을 찾아내는데 초점을 두지만, 황사는 하강기류 분석이 중요하다.

 

2011년 4월 30일 21시 300K 등온위면에서 상승기류는 우리나라 중부지방 남쪽으로 분포하며(그림 3 상단), 서해상과 보하이만(발해만) 부근에 강한 하강기류가 보인다. 보하이만에서 동해북부해상으로 이동하는 기류는 약 500hPa에서 750hPa까지 하강하는 기류이며, 산둥반도 부근에서 서해남부해상으로 이동하는 기류는 약 650hPa에서 850hPa까지 하강하는 기류이다. 즉, 서에서 동으로 이동하는 하강기류보다 보하이만에서 우리나라 방향으로 이동하는 기류가 지표 근처로 내려오는 기류라고 할 수 있다.

반면, 우리나라는 상대적으로 높은 PVU와 상승기류가 보이며, 위성영상에서 강수가 동반된 구름대가 보인다. 기류의 이동 경향을 볼 때, 위성영상에서 표출된 보하이만 부근의 황사는 하강기류와 함께 우리나라의 하층대기로 유입될 가능성이 높은 상태다.

 

 

등온위면과 일기 분석을 통해 우리나라로 황사가 유입될 가능성이 높다고 판단이 되면, 기류 추적을 통해 예상 도달 시각을 가늠해 볼 수 있다. 북서류의 기류 방향을 따라 보하이만 부근에서 태안반도로 황사가 진행할 것으로 예상할 수 있다. UM-RDAPS 분석장(2011년 4월 30일 9시)을 이용하여, 보하이만(A)부터 태안반도(B)까지 온위의 연직단면도를 분석해 보면(그림 4 a), 보하이만에서 서해 중부해상까지 등온위가 낮아지는 모습을 볼 수 있다. 그림 4(d)는 18시간 후인 5월 1일 3시 예측자료로써, B(태안반도)지점의 인근 서쪽으로 약 3km 고도에서 1km 고도로 급격하게 등온위선이 하강한다. 우리나라 서해안에 위치한 황사 관측 3개 지점의 PM10시계열을 보면(그림 4 b), PM10 농도는 5월 1일 4시부터 증가하기 시작했다. 이후 우리나라로 강한 하강기류에 동반된 황사가 유입되어 5월 1일에서 3일까지 전국에 황사 특보가 발표되었다.

 

 

반응형

+ Recent posts