연구 노트/탄소 기상 예측

머신러닝 :: 분류 리포트 1-2 hr 차

airmaster 2022. 6. 29. 15:09
728x90

모델링 평가자료

1차 데이터셋:  qc_ASOS 데이터 (2-3시간 차이)

2차 데이터셋:  mrg_ASOS_AAOS 데이터 (1-2시간 차이) 오직 y=flag

3차 데이터셋:  mrg_ASOS_AAOS 데이터 (1-2시간 차이)  x에 vis_log 를 추가하고 y=flag

 

데이터셋 주의 사항

vis_10m는 제외해야 된다.

오로지 flag로만 비교할때 보다, vis_log가 남아 있을 때 결과가 약간 더 향상되는 경우가 있다. 

 

 

코드 예제 - 의사결정 나무

#의사결정 나무
## 데이터 학습
from sklearn import tree
clf_tree = tree.DecisionTreeClassifier(random_state=0)
clf_tree.fit(X_train_std, y_train)

## 데이터 예측
pred_tree = clf_tree.predict(X_test_std)
print(pred_tree)

## 모델  스코어 평가
get_clf_eval(y_test, pred_tree)

## 분류 리포트 확인
from sklearn.metrics import classification_report
class_report = classification_report(y_test, pred_tree)
print(class_report)

 

분류 리포트 (2차 결과) 

의사결정 나무

                 |   1차         2차 > 3차 

---------------------------

 precision |   1.0

  recall      |   0.50     

  f1-score  |  0.53      

  support   |  0.52      

2차

              precision    recall  f1-score   support

         0.0       0.99      0.99      0.99     10198
         1.0       0.81      0.81      0.81       324

    accuracy                           0.99     10522
   macro avg       0.90      0.90      0.90     10522
weighted avg       0.99      0.99      0.99     10522

3차

  precision    recall  f1-score   support

         0.0       0.99      0.99      0.99     10198
         1.0       0.81      0.80      0.80       324

    accuracy                           0.99     10522
   macro avg       0.90      0.90      0.90     10522
weighted avg       0.99      0.99      0.99     10522

랜덤포레스트

                 |   1차     2차 < 3차 

---------------------------

 precision |   1.0

  recall      |   1.00     

  f1-score  |  0.09      

  support   |  0.16      

2차

             precision    recall  f1-score   support

         0.0       0.99      1.00      1.00     10198
         1.0       1.00      0.70      0.82       324

    accuracy                           0.99     10522
   macro avg       1.00      0.85      0.91     10522
weighted avg       0.99      0.99      0.99     10522

3차

              precision    recall  f1-score   support

         0.0       0.99      1.00      1.00     10198
         1.0       1.00      0.74      0.85       324

    accuracy                           0.99     10522
   macro avg       0.99      0.87      0.92     10522
weighted avg       0.99      0.99      0.99     10522

 

나이브 베이즈

                 |   1차     2차 < 3차 

---------------------------

 precision |   1.0

  recall      |   1.0     

  f1-score  |  0.09      

  support   |  0.16      

2차

       precision    recall  f1-score   support

         0.0       0.99      1.00      1.00     10198
         1.0       1.00      0.70      0.82       324

    accuracy                           0.99     10522
   macro avg       1.00      0.85      0.91     10522
weighted avg       0.99      0.99      0.99     10522

3차

              precision    recall  f1-score   support

         0.0       0.99      1.00      1.00     10198
         1.0       1.00      0.74      0.85       324

    accuracy                           0.99     10522
   macro avg       0.99      0.87      0.92     10522
weighted avg       0.99      0.99      0.99     10522

에이다 부스트

                 |   1차        2차 < 3차 

---------------------------

 precision |   1.0

  recall      |   0.75     

  f1-score  |  0.54      

  support   |  0.63   

2차

           precision    recall  f1-score   support

         0.0       0.99      1.00      1.00     10198
         1.0       0.93      0.79      0.85       324

    accuracy                           0.99     10522
   macro avg       0.96      0.89      0.93     10522
weighted avg       0.99      0.99      0.99     10522

3차

             precision    recall  f1-score   support

         0.0       0.99      1.00      1.00     10198
         1.0       0.93      0.82      0.87       324

    accuracy                           0.99     10522
   macro avg       0.96      0.91      0.93     10522
weighted avg       0.99      0.99      0.99     10522

그레디언트 부스트 (시간 걸림)

                 |   1차        2차 > 3차

---------------------------

 precision |   1.0

  recall      |   0.38     

  f1-score  |  0.03      

  support   |  0.06   

2차

             precision    recall  f1-score   support

         0.0       0.99      1.00      1.00     10198
         1.0       0.92      0.83      0.87       324

    accuracy                           0.99     10522
   macro avg       0.96      0.91      0.94     10522
weighted avg       0.99      0.99      0.99     10522

3차

             precision    recall  f1-score   support

         0.0       0.99      1.00      1.00     10198
         1.0       0.92      0.81      0.86       324

    accuracy                           0.99     10522
   macro avg       0.96      0.90      0.93     10522
weighted avg       0.99      0.99      0.99     10522

 

스태킹

                 |   1차       2차 = 3차.

---------------------------

 precision |   1.0

  recall      |   0.70     

  f1-score  |  0.56      

  support   |  0.62      

2차

             precision    recall  f1-score   support

         0.0       0.99      1.00      1.00     10198
         1.0       0.96      0.77      0.85       324

    accuracy                           0.99     10522
   macro avg       0.98      0.88      0.92     10522
weighted avg       0.99      0.99      0.99     10522

3차

             precision    recall  f1-score   support

         0.0       0.99      1.00      1.00     10198
         1.0       0.96      0.77      0.85       324

    accuracy                           0.99     10522
   macro avg       0.98      0.88      0.92     10522
weighted avg       0.99      0.99      0.99     10522

 

728x90